Condensed Matter Theory Center Seminar Wednesday, November 5 at 10:00 AM

2205 Physics Building

Speaker: Steve Kivelson (Stanford)

Title: Theory of Intertwined Orders in High Temperature Superconductors

Abstract: The electronic phase diagrams of many highly correlated systems, and in

particular the cuprate high temperature superconductors, are complex, with many

different phases appearing with similar - sometimes identical - ordering temperatures

even as material properties, such as a dopant concentration, are varied over wide

ranges. This complexity is sometimes referred to as "competing orders." However, since

the relation is intimate, and can even lead to the existence of new phases of matter

such as the putative "pair-density-wave," the general relation is better thought of in

terms of "intertwined orders." We selectively analyze some of the experiments in the

cuprates which suggest that essential aspects of the physics are reflected in the

intertwining of multiple orders-not just in the nature of each order by itself. We also

summarize and critique several theoretical ideas concerning the origin and implications

of this complexity.

Host: Jay D. Sau

http://www.physics.umd.edu/cmtc/seminars.html